

PII: S0957-4166(96)00518-6

An enantioselective, stereodivergent synthesis of threonine analogs

Giuliano delle Monache,^a Maria Cristina Di Giovanni,^b Domenico Misiti ^{b,*} and Giovanni Zappia ^b

^a Centro Chimica dei Recettori del CNR, Università Cattolica S. Cuore, Largo F. Vito 1, 00168 Roma, Italy
 ^b Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università 'La Sapienza', P. le A. Moro 5, 00185 Roma, Italy

Abstract: An enantioselective and stereodivergent methodology for the synthesis of the four isomers of β -hydroxy norvaline is presented starting from the common oxazolidin-2-one intermediate 1, *via* an iterative formation of the oxazolidin-2-one ring to achieve the stereochemical control of the stereogenic centers. The flexibility of the present approach, for the synthesis of several threonine analogs, lies in the ready displacement of the sulfonate group in 2 with the Grignard reagents in the presence of CuI. © 1997 Elsevier Science Ltd. All rights reserved.

Introduction

β-Hydroxy-α-amino acids are an important class of compounds, due to their presence in nature as primary metabolites themselves (e.g. serine, threonine), and as components of biologically active natural compounds such as peptides¹ (e.g. Echinocandin D, Teicoplanin, MeBmt in Cyclosporins, Vancomycin, etc), polyoxins and toxic peptides. Moreover, these compounds have shown particular activity as enzyme inhibitors. For instance, the diastereomeric mixture of 3-hydroxy norvaline, a simple analog of threonine, has been studied² as an inhibitor of herpes simplex virus type 1 (HSV-1). In particular, it inhibits markedly the synthesis of all glycoproteins, present in the viral envelope and the DNA replication, due to the inhibition of HSV-1 thymidine kinase and DNA polymerase, respectively. Notably, these are also the enzymatic targets of 'acyclovir'. The role of 3-hydroxy norvaline as a glycosylation inhibitor has also been studied in HIV (LAV/HTLV-II)-infected cells.³

Stereoselective syntheses of this class of compounds have been based mainly on aldol condensations between a chiral glycine derivative with the appropriate aldehyde.⁴ In these methods the preparation of different (syn, anti L- and D-)- β -hydroxy- α -amino acids involves the use of various chiral auxiliaries to control the stereoselectivity of the aldol reactions. Moreover, each target compound requires its own aldehyde as starting material.

However, when the biological response of a series of compounds has to be evaluated, a synthetic approach leading to the maximum stereochemical variations and substitution patterns is desirable. Furthermore, a synthetic scheme which makes use of parallel, repetitive transformations from a single precursor, should be preferred.

As part of our ongoing program for the synthesis of biologically relevant β -hydroxy- α -amino acids,⁵ by the use of homochiral 4,5-disubstituted oxazolidin-2-ones as chiral intermediates,^{5,6} we wish to report our results directed towards the development of such a flexible approach to the synthesis of some analogs of threonine.

Results and discussion

Our first aim was to develop a simple methodology for the control of the absolute and relative stereochemistry of the two stereogenic centers. The stereodivergent synthesis of the four isomers of β -hydroxy norvaline was selected as a model for establishing the methodology.

^{*} Corresponding author.

Scheme 1. Reagents and conditions: (i) TosCl, Et₃N, CH₂Cl₂, O°C (90%); (ii) Super Hydride[®], THF, r.t. (95%); (iii) H₂, 10% Pd/C, EtOH abs., (97%); (iv) 1) Jones' reagent; 2) CH₂N₂ (73%); (v) 6 N HCl (71%); (vi) Boc₂O, Et₃N, DMAP cat., THF (89%); (vii) Cs₂CO₃ cat., MeOH (78%).

In this way the hydroxy trans-oxazolidin-2-one 1 was the starting material of choice. The above compound 1^7 was readily available in multigram quantities by stereoselective iodocyclocarbamation of methyl (Z,4S)-5-benzyloxy-4-((benzyloxycarbonyl)-amino)-2-pentanoate, followed by removal of the iodine, under radical conditions, and reduction of the ester function.

The synthetic strategy in Scheme 1 allows the conversion of 1 into the *syn* 3-hydroxy D-norvaline 6. The *p*-toluensulfonate 2, by treatment with lithium triethylborohydride, Super-Hydride, gave the 4,5-disubstituted oxazolidin-2-one 3 in 86% yield from 1. Subsequently, hydrogenolysis over 10% Pd/C quantitatively removed the benzyl protecting group, to give the hydroxy derivative 4, which was in turn oxidized under Jones' conditions. The acid then obtained was isolated as the methyl ester 5 in 70% yield from 3. Comparable yields were achieved when two step oxidations were performed (TEMPO, NaClO/NaBr¹⁰ and 1M KMnO₄/5% NaH₂PO₄, 11 64% yield), or when the oxidation was run with RuCl₃/NalO₄ 12 in CH₃CN/CCl₄/H₂O (61%). However, the Jones' oxidation was adopted for its simplicity, safety and the low cost of reagents.

(2R,3S)-3-Hydroxy norvaline **6**,¹³ formally D- β -hydroxy-norvaline, was obtained by acid hydrolysis of **5**. On the other hand, the same β -hydroxy- α -amino acid was obtained in protected form by treatment with Boc₂O in the presence of catalytic DMAP to give **7** in 89% yield and subsequent ring opening with Cs₂CO₃.¹⁴ Clean ring opening took place in 3 h and in 78% yield to give **8** (70% yield based on **5**). The enantiomeric excess of **8** was 91%, obtained by integrating the relevant peaks in ¹H NMR spectrum¹⁵ in the presence of 0.33 equiv. of Eu(hfc)₃. It must be underlined that the protected amino acid **8** can be an useful intermediate in peptide chemistry.

The above sequence of reactions nicely evidenced the potential of the 4,5-disubstitued *trans*-oxazolidin-2-one 1 in our approach.

We then focused our attention on the synthesis of (2R,3R)-3-hydroxy norvaline 14, formally Dallo- β -hydroxy-norvaline, which requires essentially an inversion of configuration at C-3. To achieve this objective our synthetic strategy involved the opening of the *trans*-oxazolidin-2-one ring in 3

Scheme 2. Reagents and conditions: (i) Boc₂O, Et₃N, DMAP cat., THF (93%); (ii) Cs₂CO₃ cat., MeOH (74%, 10+3); (iii) aqueous Ba(OH)₂, EtOH, reflux; (iv) Boc₂O, THF (71% from 3).

followed by conversion into the *cis*-isomer. Therefore, 3 was treated with Boc₂O/DMAP and then with Cs₂CO₃/MeOH (Scheme 2).

In contrast with the literature report 14 and our above results, the reaction of 9 with $Cs_2CO_3/MeOH$ gave, only after 16 h, a mixture of 10 and 3 in a moderate regioselectivity (60:40). The lack in regioselectivity 16 for this reaction has been already observed by us^{5d} for other 4,5-disubstituted N-Boc oxazolidin-2-ones. To overcome this shortcoming, compound 3 was directly treated under alkaline conditions with satd. aq. $Ba(OH)_2$ -EtOH under reflux for 16 h, to achieve the ring opening, followed by reprotection of the amine function, to give the N-Boc derivative 10 in 71% from 3.

Compound 10 was then converted into the *cis* oxazolidin-2-one 11 following the procedure reported by Ohfune, ¹⁷ which involves mesylation of the hydroxy function, conversion of the Boc protecting group into the trimethylsilyl-carbamate and finally treatment with a solution of TBAF in THF.

Since the desired cis-11 was obtained in low (41%) and variable yields, we searched for an alternative method, to obtain it directly. Our studies culminated with the use of the solid complex Ph₃P/Cl₂, a reagent used to convert alcohols into chlorides, ¹⁸ in hot CHCl₃ to give, after chromatographic separation, the required cis-11 in 68% yield. The reaction takes place ¹⁹ very likely by activation of the hydroxy group followed by internal carbamate displacement which occurs faster than the substitution reaction.

Compound 11 was converted into the target anti- β -hydroxy- α -amino acid by a pathway parallel to that which gave the syn stereoisomer 8 from 3 (Scheme 1). As summarised in Scheme 3 compound 11 gave 14^{13} in 51% overall yield, and its protected form 16 in 45% yield. The above shown cis-oxazolidin-2-ones are characterized by a coupling constant $J_{H4,H5}$ (ca. 7–8.5 Hz)²⁰ higher than that of the trans-stereoisomers (ca. 5 Hz).^{5,6,20} The values of the coupling constants may be modified by different substituents and are not easily determined when the C-4 and C-5 are substituted by methylene or methyl groups unless decoupling experiments are performed.

In Table 1 the coupling constant $J_{\rm H4,H5}$ and other spectral features of some *trans/cis* pairs of oxazolidinones are compared. Notably, for all the *cis* derivatives the signals for H-4 and H-5 appear at lower field than those of the *trans* stereoisomers. A similar behaviour, induced by a γ -effect is shown in the ¹³C NMR spectra by the C-4 and C-5 substituents, the difference in chemical shift depending on the nature of the substituent. Therefore a simple comparison of the ¹H and/or ¹³C NMR spectra of *trans* and *cis* stereoisomers allows their identification. Table 1 also shows that the methylene signal of the ethyl group at C-5 appears at very different values in the *trans* and *cis* compounds and is independent of the C-4 substitution. The CH₂ chemical shift (*ca*. δ_c 28 ppm for the *trans* and *ca*. 23 ppm for the *cis*-stereoisomer) may thus be diagnostic when only one of the stereoisomers is available.

Scheme 3. Reagents and conditions: (i) Ph₃P•Cl₂, CHCl₃, 45°C (68%); (ii) H₂, 10% Pd/C, EtOH abs. (96%); iii) 1) Jones' reagent; 2) CH₂N₂ (70%); (iv) 6 N HCl (79%); (v) Boc₂O, Et₃N, DMAP cat., THF (93%); (vi) Cs₂CO₃ cat., MeOH (75%).

Table 1. Selected ¹H- and ¹³C NMR data for trans/cis pairs of oxazolidin-2-ones^a

	3	11	4	12	5	13	7	15
$J_{\mathrm{H_4,H_5}}$	5.5	7	5	7.5	5	8.5	4.5	8.5
δ_{H_4}	3.65	3.91	3.60	3.84	4.01	4.44	4.39	4.73
δ_{H_5}	4.20	4.52	4.32	4.57	4.47	4.69	4.30	4.53
δ _{C-4subst.}	71.87	68.50	63.63	61.08	170.58	169.75	169.13	167.96
δ _{C-5subst.}	27.80	22.23	27.75	22.29	28.09	23.95	28.25	23.77

^a J: Hz; δ: ppm.

Although in principle, the L-isomers of 8 and 16 can be prepared by the above protocol starting from the (4R,5R) isomer of $1,^{5a}$ readily available from L-serine, 21 we studied the possibility of exploiting some of the above intermediates to obtain the (2S,3R)- and (2S,3S)-isomers. Thus, since the *trans*-oxazolidin-2-one is more stable than the *cis*-isomer, 22 the methyl ester 13 was treated under alkaline conditions with 0.6 N ethanolic KOH at reflux. Under these conditions, both hydrolysis and C-4 epimerization took place, and the *trans*-oxazolidin-2-one 17 was isolated in 80% yield after

Scheme 4. Reagents and conditions: (i) 1) Ethanolic 0.6 N KOH, reflux, 1 h; 2) CH₂N₂ (80%); (ii) 1) ethanolic 0.6 N KOH, reflux, 1 h, then aqueous 2 N KOH; 2) Boc₂O, 1 N NaOH, dioxane (63%).

Scheme 5. Reagents and conditions: (i) SOCl2, r.t. (38%).

esterification with CH_2N_2 . On the other hand, when the mixture from the epimerization reaction was directly treated with aqueous 2 N KOH under reflux for 7 h followed by Boc_20 , the (2S,3R)-amino acid L-norvaline was obtained as the N-Boc methyl ester 18 in 63% yield from 13 (Scheme 4). The e.e. (92%) of 18 was determined by the same method as for the compound 8.

In summary, three of the four stereoisomers of 3-hydroxy norvaline can be prepared by the synthetic pathways shown above, starting from a common precursor. In order to obtain the remaining (2S,3S)-isomer, the inversion of configuration at C-3 in compound 18 was studied. The best result was obtained by treatment of 18 with neat $SOCl_2^{23}$ at room temperature for 24 h, which gave the *cis*-oxazolidin-2-one 19 in only 38% yield (Scheme 5). The last compound is the enantiomer of 13 and may be formally converted into the L-allo- β -hydroxy-norvaline according to the same reactions of Scheme 3.

Finally, with the aim of extending the synthetic possibility offered by the 4,5-disubstituted oxazolidin-2-one 1, we have investigated the functionalization of C-5 using the sulfonate 2 as an electrophilic threoninol synthon. The results of the reactions of 2 with several Grignard reagents in the presence of CuI²⁴ (1.5 eq.) are reported in Table 2.

An excess (3.5 eq.) of organometallic reagent was required to obtain the products within a reasonable time (18 h). The displacements proceeded in reasonable chemical yields (62–85%) with alkyl- and aryl-Grignard reagents. The use of Li₂CuCl₄²⁵ to catalyse the above cross-coupling reaction has been briefly considered, but the yields were lower than those obtained with CuI.

Compound	R	Nucleophile	Isolated Yield (%)
20	Me	MeMgBr/CuI	73
21	Ph	PhMgBr/CuI	78
		PhMgBr/Li ₂ CuCl ₄	60
22	Allyl	AllylMgBr/CuI	62
		AllylMgBr/Li ₂ CuCl ₄	39
23	Cyclohexyl	C ₆ H ₁₁ MgBr/CuI	85
24	Ethyl	C ₂ H ₅ MgBr/CuI	78
25	Propyl	C ₃ H ₇ MgBr/CuI	72

Table 2. Threonine analogues-modification in the C-5 side chain

In conclusion, we have reported a flexible, stereodivergent methodology to the synthesis of syn and anti 3-hydroxy L- and D-norvaline, from the readily available 4,5-disubstituted oxazolidin-2-one 1. The reported approach presents as 'leitmotiv' the iterative formation of the oxazolidin-2-one ring both to protect the amino-alcohol function and to achieve the stereochemical control of the stereogenic centers. The present approach can be easily extended to the synthesis of a large number of threonine analogs by modification of the C-5 side chain, which was performed by easy nucleophilic displacement with Grignard reagents of the sulfonate group in 2. Further studies are in progress in our laboratory on the use of homochiral 4,5-disubstituted oxazolidin-2-ones as chiral intermediates.

Experimental

Melting points were determinated in open capillaries using a Buchi apparatus and are uncorrected. IR spectra were recorded on a Nicolet 5DX FT-IR spectrophotometer. 1H - and ^{13}C -NMR spectra were run on a Varian Gemini 300 spectrometer at 300 and 75 MHz respectively, in CDCl₃, unless otherwise reported. Chemical shifts (δ scale) are relative to TMS as internal reference. The proton chemical-shifts in 1H NMR spectra were assigned by HETCOR correlations with carbon signals, but the multiplicities were not determined. Optical rotations were determined on a Perkin Elmer 243 polarimeter at 21°C (concentration g/100 ml). All solvents were dried prior to use. 26 Thin layer chromatography was performed on Merck silica gel 60 F_{254} glass plates.

(4S,5S)-4-(Benzyloxy)methyl-5-(2-p-toluensulfonyloxyethyl)-2-oxo-oxazolidine 2

To a well stirred solution of 1 (2.372 g, 9.45 mmol) and Et₃N (3.96 ml, 28.32 mmol) in dry CH₂Cl₂ (26 ml) at 0°C p-toluensulfonyl chloride (3.24 g, 17 mmol) was added in one portion. The solution was stirred for 4 h at room temperature, diluted with CH₂Cl₂ (150 ml) and washed with 1 N HCl (2×100 ml), 5% aqueous NaHCO₃ (2×100 ml) and brine (2×100 ml). The organic layer was dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by silica gel chromatography with EtOAc/n-hexane (1:1) as eluent to give 2 (3.58 g, 90%) as a white solid. M.p.=84–85°C; [α]p=-20.1 (c=2.9, CHCl₃). IR (KBr) ν : 3289, 1746, 1724, 1362, 1175, 1096, 993, 907 cm⁻¹. ¹H NMR δ : 7.77, 7.34 (d, J=8.0 Hz, 2H each, CH₃C₆H₄), 7.40–7.25 (m, 5H, C₆H₅), 5.60 (s, 1H, NH), 4.53 (s, 2H, C₆H₅CH₂O), 4.36 (dt, J=7.5 and 2×5.5 Hz, 1H, CHO), 4.18 (dt, J=10.0 and 2×5.0 Hz, 1H, CH_AH_BOC₆H₄), 4.12 (ddd, J=10.0, 7.0 and 6.0 Hz, 1H, CH_AH_BC₆H₄), 3.64 (brq, J=5.5 Hz, 1H, CHN), 3.46 (dd, J=9.0 and 5.0 Hz, 1H, OCH_CH_D), 3.43 (dd, J=9.0 and 7.5 Hz, 1H, OCH_CH_D), 2.45 (s, CH₃, 3H), 2.06 (brq, J=6.0 Hz, 2H, CH₂); ¹³C NMR δ : 158.03 (s, NHCO), 145.15, 132.56, 130.01, 127.91 (s, s, 2×d, 2×d, CH₃C₆H₄), 137.15, 128.63, 128.13, 127.81 (s, 2×d, d, 2×d, C₆H₅), 75.33 (d, CHO), 73.63 (t, C₆H₅CH₂O), 71.27 (t, CH₂O), 65.88 (t, CH₂OSO₂), 57.06 (d, CHN), 34.40 (t,

 CH_2), 21.65 (q, CH_3). Anal. Calcd. for $C_{20}H_{23}NO_6S$: C=59.24, H=5.72, N=3.46; Found: C=59.35, H=5.64, N=3.36.

(4S,5S)-4-(Benzyloxy)methyl-5-ethyl-2-oxo-oxazolidine 3

To a well stirred solution of sulfonate 2 (1.458 g, 3.71 mmol) in dry THF (20 ml) was added dropwise a solution of LiEt₃ BH (1 M in THF, 13 ml, 13 mmol) under N₂ at 0°C. The solution was stirred at the same temperature for 1 h and at room temperature overnight. After that time the reaction mixture was cooled at 0°C, and an aqueous solution of NaOH (5%, 5 ml) was added. The mixture was stirred for 5 min and extracted with EtOAc (2×100 ml). The organic extracts were washed with brine, dried over Na₂SO₄, concentrated and purified by silica gel chromatography using EtOAc/*n*-hexane (7:3) as eluent to give 3 (0.828 g, 95%). [α]_D=+12.12 (c=0.9, CHCl₃). IR (neat) ν : 3254, 1750, 1736, 1458, 1368, 1240, 1121 cm⁻¹. ¹H NMR δ : 7.40–7.25 (m, 5H, C₆H₅), 5.99 (brs, 1H, NH), 4.54 (s, 2H, C₆H₅CH₂O), 4.20 (dt, *J*=7.0 and 2×5.5 Hz, 1H, CHO), 3.65 (q, *J*=3×5.5 Hz, 1H, CHN), 3.45 (d, *J*=5.5 Hz, 2H, OCH₂), 1.77 (dp, *J*=14.0 and 4×7.0 Hz, 1H, OCH_AH_BCH₃), 1.69 (ddp, *J*=14.0, 3×7.0 and 5.5, 1H, OCH_AH_BCH₃), 1.00 (t, *J*=7.0 Hz, 3H, CH₂CH₃). ¹³C-NMR δ : 159.02 (s, NHCO), 137.34 (s, C₆H₅), 128.51, 127.67 (d×2 each, C₆H₅), 127.95 (d, C₆H₅), 80.52 (d, CHO), 73.52 (t, C₆H₅CH₂O), 71.87 (t, OCH₂), 56.77 (d, CHN), 27.80 (t, CH₂), 8.75 (q, CH₃). Anal. Calcd. for C₁₃H₁₇NO₃: C=66.36, H=7.28, N=5.95; Found: C=66.19, H=7.39, N=5.82.

(4S,5S)-4-Hydroxymethyl-5-ethyl-2-oxo-oxazolidine 4

Compound **3** (0.475 g, 2.025 mmmol) was dissolved in abs. EtOH (15 ml) and hydrogenated over 10% Pd/C at 1 atm for 18 h. After that time the solution was filtered over Celite and concentrated under reduced pressure to give **4** (0.287 g, 97%) as a colorless oil, which was used without further purification. [α]_D=-31.0 (c=3.6, MeOH). IR (neat) v: 3336, 1737, 1410, 1255, 1081, 1043 cm⁻¹. H NMR: δ : 6.68 (brs, 1H, NH), 4.32 (brq, J=6.0 Hz, 1H, CHO), 3.70 (dd, J=11.0 and 2.0 Hz, 1H, OCH_AH_B), 3.60 (dt, J=2×5.0 and 2.0 Hz, 1H, CHN), 3.55 (dd, J=11.0 and 5.0 Hz, 1H, OCH_AH_B), 1.79, 1.71 (dp, J=14.0 and 4×7.0 Hz, 1H each, CH₂), 1.01 (t, J=7.0 Hz, 3H, CH₃). Hong δ : 160.21 (s, NHCO), 80.25 (d, CHO), 63.63 (t, CH₂OH), 58.96 (d, CHN), 27.75 (t, CH₂), 8.75 (q, CH₃). Anal. Calcd. for C₆H₁₁NO₃: C=49.65, H=7.64, N=9.65; Found: C=49.70, H=7.67, N=9.55.

(4R,5S)-4-Carboxymethyl-5-ethyl-2-oxo-oxazolidine 5

The Jones' oxidation⁸ was performed. A solution of hydroxy oxazolidin-2-one 4 (0.267 g, 1.86 mmol) in acetone (39 ml) was added dropwise at -5°C to a solution of freshly prepared Jones' reagent (5.88 ml) in acetone (16 ml). The Jones' reagent was a solution of chromic trioxide (2.65 g), conc. H₂SO₄ (2.3 ml) and water (to a total vol. of 10 ml). After 4 h at -5°C, 2-propanol was added dropwise until the medium turned blue, water was added, and extraction with EtOAc (3×100 ml) was performed. The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated under reduced pressure. The resulting crude acid was dissolved in EtOAc (10 ml), cooled at 0°C and treated with an ethereal solution of CH₂N₂, followed by stirring for 45 min. at room temperature. Excess of CH₂N₂ was destroyed by addition of a solution of CH₃COOH (5M in CH₂Cl₂, 0.1 ml). After evaporation, the crude mixture was purified by silica gel chromatography using EtOAc/n-hexane (3:2) as eluent to give 5 (2.32 g, 73%) as an oil. $[\alpha]_{D}$ =-33.83 (c=0.34, CHCl₃). IR (neat) v: 3295, 1761, 1392, 1220 cm⁻¹. ¹H NMR δ : 6.88 (br s, 1H, NH), 4.47 (dt, $J=2\times6.5$ and 5.0 Hz, 1H, CHO), $4.01 \text{ (d, } J=5.0 \text{ Hz, } 1\text{H, CHN)}, 3.73 \text{ (s, } 3\text{H, OCH}_3), 1.78 \text{ (p, } J=7.0 \text{ Hz, } 2\text{H, CHC} H_2\text{CH}_3), 0.98 \text{ (t, } J=7.5 \text{ Hz, } 2\text{H, CHC} H_2\text{CH}_3), 0.98 \text{ (t, } J=7.5 \text{ Hz, } 2\text{H, } 2\text{H,$ Hz, 3H, CH₂CH₃). ¹³C NMR δ: 170.58 (s, COOCH₃), 158.68 (s, NHCO), 80.09 (d, CHO), 58.31 (d, CHN), 52.78 (q, OCH₃), 28.09 (t, CH₂), 8.44 (q, CH₃). Anal. Calcd. for C₇H₁₁NO₄: C=48.55, H=6.40, N=8.09; Found: C=48.61, H=6.41, N=7.95.

(2R,3S)-3-Hydroxy norvaline 6

A suspension of compound 5 (0.164 g, 0.95 mmol) in 6 N HCl (5 ml) was heated at 90°C overnight. After this time the reaction mixture was concentrated under reduced pressure, dissolved in the minimum

amount of water and filtered through an ion-exchange column (Amberlist IR-120), eluting with H_2O , then with NH₄OH. The fractions containing the amino-acid were concentrated to give 6 (90 mg, 71%). M.p.=228–229°C. [α]_D=-8.9 (c=0.71, 1 M HCl). [Lit.¹³: m.p.=232–233°C; [α]_D=-9.2 (c=1, 1 M HCl); Lit.²⁷: m.p.=232–233°C; [α]_D=-9.7 (c=0.87, 1M HCl)].

(4R,5S)-3-(tert-Butoxycarbonyl)-4-(carboxymethyl)-5-ethyl-2-oxo-oxazolidine 7

To a well stirred solution of **5** (0.192 g, 1.11 mmol) in dry THF (20 ml) was added Et₃N (0.22 ml, 1.58 mmol), Boc₂O (0.384 g, 1.76 mmol). After 10 min DMAP (16 mg, 0.13 mmol) was added and the reaction was stirred at room temperature for 16 h. After that time the solution was concentrated under reduced pressure and the residue was diluted with CHCl₃ (150 ml), washed with 1 N HCl (2×10 ml), 5% aqueous NaHCO₃ (2×10 ml) and brine. The organic solution was dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by silica gel chromatography with EtOAc/*n*-hexane (1:1) as eluent to give **7** (0.270g, 89%). [α]_D=+4.4 (c=0.9, CHCl₃). IR (neat) ν : 2978, 1827, 1753, 1728, 1368, 1335, 1212, 1072 cm⁻¹. ¹H NMR δ : 4.39 (d, *J*=4.5 Hz, 1H, CHN), 4.30 (dt, *J*=2×6.5 and 4.5 Hz, 1H, CHO), 3.83 (s, 3H, OCH₃), 1.85 (dp, *J*=10.0 and 4×7.0 Hz, 1H, CH_AH_BCH₃), 1.83 (dp, *J*=10.0 and 4×7.0 Hz, 1H, CH_AH_BCH₃), 1.51 [s, 9H, C(CH₃)₃], 1.06 (t, *J*=7.0 Hz, 3H, CH₂CH₃). ¹³C NMR δ : 169.13 (s, COOCH₃), 150.70 (s, NCOC), 148.55 [s, NCOC(CH₃)₃], 84.52 [s, C(CH₃)], 76.72 (d, CHO), 60.83 (d, CHN), 52.95 (q, OCH₃), 28.25 (t, CH₂), 27.72 [q, C(CH₃)₃], 8.33 (q, CH₃). Anal. Calcd. for C₁₂H₁₉NO₆: C=52.74, H=7.01, N=5.13; Found:C=52.61, H=7.18, N=5.10.

Methyl (2R,3S)-2-tert-butoxycarbonylamino-3-hydroxy pentanoate 8

To a well stirred solution of **7** (0.150 g, 0.55 mmol) in dry MeOH (8 ml) was added Cs₂CO₃ (0.035 g, 0.11 mmol) in one portion and the solution was stirred at room temperature for 3 h. After that time the solution was neutralized with solid citric acid and concentrated under reduced pressure. The residue was dissolved in EtOAc (50 ml), washed with brine (50 ml), H₂O (50 ml) and dried over Na₂SO₄. The residue was purified by silica gel chromatography using EtOAc/*n*-hexane (2:3) as eluent to give **8** (0.107 g, 78%) as a colorless oil. [α]_D=+4.9 (c=0.81, EtOH abs.). IR (neat) ν : 3459, 2975, 1720, 1696, 1507, 1368, 1162 cm⁻¹. ¹H NMR δ : 5.72 (br d, J=9.0 Hz, 1H, NH), 4.23 (dd, J=9.0 and 3.0 Hz, 1H, CHN), 4.19 (d, J=6.0 Hz, 1H, OH), 3.98 (dq, J=3×6.5 and 3.0 Hz, 1H, CHO), 3.69 (s, 3H, OCH₃), 1.53 (p, J=4×7.0 Hz, 2H, CH₂CH₃), 1.42 [s, 9H, (CH₃)₃], 0.94 (t, J=7.0 Hz, 3H, CH₂CH₃). ¹³C NMR δ : 172.52 (s, COOCH₃), 156.67 (s, NCOO), 79.41 [s, OC(CH₃)₃], 73.58 (d, CHO), 58.37 (d, CHN), 52.20 (q, OCH₃), 28.43 [q, C(CH₃)₃], 27.67 (t, CH₂), 10.44 (q, CH₃). Anal. Calcd. for C₁₁H₂₁NO₅: C=53.43, H=8.56, N=5.66; Found: C=53.38, H=8.49, N=5.55.

(4S,5S)-3-(tert-Butoxycarbonyl)-4-(benzyloxy)methyl-5-ethyl-2-oxo-oxazolidine 9

To a well stirred solution of 3 (0.45 g, 1.91 mmol) in dry THF (26 ml) was added Et₃N (0.39 ml, 2.85 mmol), Boc₂O (0.665 g, 3.05 mmol) and DMAP (0.023 g, 0.20 mmol). The reaction was performed as for the compound **7** and the residue purified by silica gel chromatography with EtOAc/n-hexane (3:7) as eluent to give **9** (0.592 g, 93%). [α]_D=+13.5 (c=1.6, CHCl₃). IR (neat) ν : 2978, 1825, 1743, 1458, 1376, 1123 cm⁻¹. ¹H NMR δ : 7.40–7.25 (m, 5 H, C₆H₅), 4.55 (s, 2H, C₆H₅CH₂O), 4.35 (ddd, J=7.0, 6.0 and 3.0 Hz, 1H, CHO), 3.94 (dt, J=6.0 and 2×3.0 Hz, 1H, CHN), 3.65 (dd, J=9.0 and 6.0 Hz, 1H, OCH_AH_B), 1.76 (dp, J=14.0 and 4×7.0 Hz, 1H, CH_CH_DCH₃), 1.67 (ddq, J=14.0, 3×7.0 and 6.0 Hz, 1H, CH_CH_DCH₃), 1.48 [s, 9H, C(CH₃)₃], 1.00 (t, J=7.0 Hz, 3H, CH₂CH₃). ¹³C NMR δ : 151.85 (s, NCOO), 149.36 [s, COOC(CH₃)₃], 137.37 (s, C₆H₅), 127.56, 128.49 (d×2 each, C₆H₅), 127.89 (d, C₆H₅), 83.84 [s, OC(CH₃)₃], 77.65 (d, CHO), 73.37 (t, C₆H₅CH₂O), 68.54 (t, OCH₂), 58.75 (d, CHN), 27.91 [t and q, CH₂ and OC(CH₃)₃], [in C₆D₆: 27.97 (q, OC(CH₃)₃), 27.88 (t, CH₂)], 8.59 (q, CH₃). Anal. Calcd. for C₁₈H₂₅NO₅: C=64.46, H=7.51, N=4.18; Found: C=64.41, H=7.53, N=4.11.

(2S,3S)-1-Benzyloxy-2-tert-butoxycarbonylamino-3-hydroxy pentane 10

A solution of oxazolidin-2-one 3 (1.0 g, 4.25 mmol) in EtOH (300 ml) was added to a satd. solution of Ba(OH)₂ (70 ml) and heated at reflux for 10 h. After that time most of the organic solvent was removed under reduced pressure and the resulting aqueous solution was poured on the top of an ionexchange column (Amberlist IR 120) and eluted with H₂O, followed by 30% NH₄OH. The fractions with the amino-alcohol were concentrated under reduced pressure and the residue dissolved in dry THF (60 ml) followed by the addition of Boc₂O (1.25 g, 5.73 mmol) and Et₃N (0.654 ml, 4.7 mmol). The reaction mixture was stirred overnight at room temperature, concentrated under reduced pressure and purified by silica gel chromatography using EtOAc/n-hexane (1:1) as eluent to give 10 (1.31 g, 71%) as a colorless oil. [α]_D=+3.21 (c=0.44, MeOH). IR (neat) ν : 418, 1696, 1507, 1458, 1368, 1244, 1171 cm⁻¹. ¹H NMR δ : 7.40–7.25 (m, 5H, C₆H₅), 5.21 (d, J=7.0 Hz, 1H, NH), 4.55 (d, J=12.0 Hz, 1H, $C_6H_5CH_AH_B$), 4.51 (d, J=12.0 Hz, 1H, $C_6H_5CH_AH_B$), 3.82 (br dt, $J=2\times7.0$ and 2.0 Hz, 1H, CHO), 3.71 (d, J=10.0 Hz, 2H, OCH₂), 3.64 (dt, $J=2\times10.0$ and 7.0 Hz, 1H, CHN), 3.02 (d, J=2.0Hz, 1H, OH), 1.51 (p, J=7.5 Hz, 2H, CHC H_2 CH₃), 1.44 (s, 9H, C(CH₃)₃), 0.95 (t, J=7.5 Hz, 3H, CH₂CH₃). ¹³C NMR δ : 156.11 (s, NHCO), 137.44 (s, C₆H₅), 127.66, 128.54 (d×2 each, C₆H₅), 127.95 (d, C₆H₅), 79.37 (s, OC(CH₃)₃), 74.59 (d, CHO), 73.68 (t, OCH₂C₆H₅), 73.23 (t, CH₂O), 52.26 (d, CHN), 28.35 [q, C(CH₃)₃], 26.71 (t, CH₂), 10.12 (q, CH₃). Anal. Calcd. for C₁₇H₂₇NO₄: C=65.99, H=8.80, N=4.55; Found: C=66.11, H=8.55, N=4.47.

(4S,5R)-4-(Benzyloxy)methyl-5-ethyl-2-oxo-oxazolidine 11

To a well stirred solution of **10** (0.587 g, 1.9 mmol) in CHCl₃ (12 ml) was added solid dichlorotriphenylphosphorane¹⁸ (0.646 g, 2.0 mmol) and the mixture was stirred at 45°C for 18 h. The mixture reaction was concentrated under reduced pressure and the residue was purified by silica gel chromatography with EtOAc/n-hexane (7:3) as eluent to give **11** (0.304 g, 68%). [α]_D=-4.9 (c=0.27, CHCl₃). IR (neat) ν : 3254, 2936, 1745, 1458, 1376, 1121 cm⁻¹. ¹H NMR δ : 7.40–7.25 (m, 5H, C₆H₅), 6.10 (brs, 1H, NH), 4.53 (d, 1H, J=12 Hz, C₆H₅CH_AH_BO), 4.51 (1H, ddd, J=10.0, 7.0 and 4.0 Hz, CHO), 4.48 (d, 1H, J=12.0 Hz, C₆H₅CH_AH_BO), 3.91 (dt, 1H, J=2×7.0 and 5.0 Hz, CHN), 3.52 (dd, 1H, J=9.5 and 5.0 Hz, OCH_CH_DC*), 3.44 (dd, 1H, J=9.5 and 7.0 Hz, OCH_CH_DC*), 1.72 (ddq, 1H, J=14.0, 10.0 and 3×7.0 Hz, CH_EH_FCH₃), 1.61 (ddq, 1H, J=14.0, 3×7.0 and 4.0 Hz, CH_EH_FCH₃), 1.03 (t, 3H, J=7.0 Hz, CH₃). ¹³C NMR δ =159.44 (s, CONH), 137.26 (s, C₆H₅), 128.40, 127.51 (d×2 each, C₆H₅), 127.83 (d, C₆H₅), 80.32 (d, CHO), 73.49 (t, C₆H₅CH₂), 68.50 (t, OCH₂), 54.74 (d, CHN), 22.23 (t, CH₂), 10.52 (q, CH₃). Anal. Calcd. for C₁₃H₁₇NO₃: C=66.65, H=6.88, N=5.98; Found: C=66.53, H=6.79, N=5.81.

(4S,5R)-4-Hydroxymethyl-5-ethyl-2-oxo-oxazolidine 12

The title compound was obtained from 11 (0.750 g, 3.19 mmol) according to the procedure used for the preparation of 4 (yield: 0.444 g, 96%). [α]_D=+36.4 (c=0.29, MeOH). IR (neat) ν : 3377, 1737, 1400, 1253, 1097, 1056 cm⁻¹. ¹H NMR δ : 6.26 (br s, 1H, NH), 4.57 (ddd, J=9.5, 7.5 and 4.5 Hz, 1H, CHO), 3.84 (ddd, J=7.5, 6.5 and 4.0 Hz, 1H, CHN), 3.73 (dd, J=11.5 and 4.0 Hz, 1H, CH_AH_BOH), 3.68 (dd, J=11.5 e 6.5 Hz, 1H, CH_AH_BOH); 1.83 (ddq, J=14.0, 9.5 and 3×7.5 Hz, 1H, CH_CH_DCH₃), 1.67 (ddq, J=14.0, 3×7.5 and 4.5 Hz, 1H, CH_CH_DCH₃), 1.07 (t, J=7.5 Hz, 3H, CH₂CH₃). ¹³C NMR δ : 160.23 (s, NHCO), 80.96 (d, CHO), 61.08 (t, CH₂OH), 56.59 (d, CHN), 22.29 (t, CH₂), 10.67 (q, CH₃). Anal. Calcd. for C₆H₁₁NO₃: C=49.65, H=7.64, N=9.65; Found: C=49.61, H=7.62, N=9.55.

(4R,5R)-4-Carboxymethyl-5-ethyl-2-oxo-oxazolidine 13

According to the procedure used for the preparation of **5**, compound **12** (0.441 g, 3.07 mmol) was converted into **13**. Yield: 0.372 g, 70%. $[\alpha]_D$ =+30.6 (c=0.48, CHCl₃). IR (neat) v: 3377, 1737, 1400, 1253, 1097, 1056 cm⁻¹. ¹H NMR δ : 6.50 (br s, 1H, NH), 4.69 (dt, J=2×8.5 and 4.5 Hz, 1H, CHO), 4.44 (d, J=8.5 Hz, 1H, CHN), 3.80 (s, 3H, OCH₃), 1.69 (ddq, J=12.0, 3×7.0 and 4.5 Hz, 1H, CH_AH_BCH₃), 1.59 (ddq, J=12.0, 8.5 and 3×7.0 Hz, 1H, CH_AH_BCH₃), 1.07 (t, J=7.0 Hz, 3H,

 CH_2CH_3). ¹³C NMR δ : 159.24 (s, NHCO), 79.62 (d, CHO), 58.08 (d, CHN), 52.50 (q, OCH₃), 23.95 (t, CH₂), 10.05 (q, CH₃). Anal. Calcd. for $C_7H_{11}NO_4$: C=48.55, H=6.40, N=8.09; Found: C=48.50, H=6.38, N=8.10.

(2R,3R)-3-Hydroxy norvaline 14

A suspension of compound 13 (0.135 g, 0.78 mmol) in 6 N HCl (4 ml) was heated at 90°C overnight. After that time the reaction mixture was concentrated under reduced pressure, dissolved in the minimum amount of water and filtered through an ion-exchange column (Amberlist IR-120), eluting with H_2O , than with NH_4OH . The fractions containing the amino-acid were concentrated to give 14 (91 mg, 79%). M.p.=222-224°C. [α]_D=-24.3 (c=1, 1M HCl). [Lit.¹³: [α]_D=-22.3 (c=1, 1M HCl)].

(4R,5R)-3-(tert-Butoxycarbonyl)-4-(carboxymethyl)-5-ethyl-2-oxo-oxazolidine 15

To a well stirred solution of **13** (0.150 g, 0.86 mmol) in dry THF (16 ml) was added Et₃N (0.172 ml, 1.24 mmol), and Boc₂O (0.31 g, 1.38 mmol). After 10 min DMAP (12 mg, 0.1 mmol) was added and the reaction was performed as for the compound **7**, to give **15** (0.218 g, 93%). [α]_D=+39.0 (c=0.5, CHCl₃). IR (neat) v: 2975, 1827, 1753, 1728, 1368, 1326, 1220, 1182, 1072 cm⁻¹. ¹H NMR δ: 4.73 (d, J=8.5 Hz, 1H, CHN), 4.53 (ddd, J=9.0, 8.5 and 4.5 Hz, 1H, CHO), 3.81 (s, 3H, OCH₃), 1.69 (ddq, J=12.0, 3×7.5 and 4.0 Hz, 1H, $CH_AH_BCH_3$), 1.59 (ddq, J=12.0, 9.0 and 3×7.5 Hz, 1H, $CH_AH_BCH_3$), 1.50 [s, 9H, $C(CH_3)_3$], 1.08 (t, J=7.5 Hz, 3H, CH_3). ¹³C NMR δ: 167.96 (s, COO), 151.07 (s, CON), 148.57 [s, NCOOC(CH₃)₃], 84.47 [s, OC(CH₃)₃], 75.89 (d, CHO), 60.50 (d, CHN), 52.51 (q, OCH₃), 27.75 [q, $C(CH_3)_3$], 23.77 (t, CH_2), 9.97 (q, CH_3). Anal. Calcd. for $C_{12}H_{19}NO_6$: C=52.74, H=7.01, N=5.13; Found: C=52.84, H=7.09, N=5.11.

Methyl (2R,3R)-2-tert-butoxycarbonylamino-3-hydroxy pentanoate 16

To a well stirred solution of **15** (0.2 g, 0.733 mmol) in dry MeOH (11 ml) was added Cs₂CO₃ (47 mg, 0.148 mmol) and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was processed as for the compound **8** to give **16** (0.136 g, 75%). [α]_D=+7.1 (c=0.7, EtOH abs.). IR (neat) v: 3459, 2970, 1720, 1510, 1370, 1162 cm⁻¹. ¹H NMR δ : 5.54 (br d, J=8.0 Hz, 1H, NH), 4.39 (dd, J=8.0 and 4.5 Hz, 1H, CHN), 3.81 (br dt, J=2×7.5 and 4.5 Hz, 1H, CHO), 3.78 (s, 3H, OCH₃), 2.97 (brs, 1H, OH), 1.51 (p, J=4×7.5 Hz, 2H, CH₂CH₃), 1.45 [s, 9H, C(CH₃)₃], 1.00 (t, J=7.5 Hz, 3H, CH₂CH₃). ¹³C NMR δ : 171.29 (s, COO), 155.91 [s, COOC(CH₃)₃], 80.36 [s, OC(CH₃)₃], 74.47 (d, CHO), 58.00 (d, CHN), 52.38 (q, OCH₃), 28.23 [q, C(CH₃)₃], 26.36 (t, CH₂), 10.47 (q, CH₃). Anal. Calcd. for C₁₁H₂₁NO₅: C=53.43, H=8.56, N=5.66; Found: C=53.53, H=8.66, N=5.61.

(4S,5R)-4-Carboxymethyl-5-ethyl-2-oxo-oxazolidine 17

A solution of 13 (0.15 mg, 0.87 mmol) in absolute ethanol (5 ml) was treated with a 0.6 N solution of KOH (3 ml) and heated at reflux for 1 h. After that time the solution was concentrated under reduced pressure and partitioned between water and EtOAc. The aqueous layer was acidified with 5% HCl, extracted with EtOAc (2×50 ml), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was dissolved in EtOAc (10 ml), cooled at 0°C and treated with an ether solution of CH₂N₂, followed by stirring for 30 min at room temperature. Usual work up gave crude ester which was purified by silica gel chromatography using EtOAc/n-hexane (3:2) as eluent to give 17 (0.12 g, 80%). [α]_D=+32.1 (c=0.5, CHCl₃). IR, ¹H and ¹³C NMR spectra were similar to those described for 5. Anal. Calc. for C₇H₁₁NO₄: C=48.55, H=6.40, N=8.09; Found: C=48.33, H=6.29, N=7.95.

Methyl (2S,3R)-2-tert-butoxycarbonylamino-3-hydroxy pentanoate 18

A solution of *cis*-oxazolidinone 13 (0.2 g, 1.16 mmol) in absolute EtOH (7 ml) was treated with a 0.6 N solution of KOH (4 ml) and heated at reflux for 1 h. After that time a 2 N aqueous solution of KOH (7.81 ml) was added and the solution was refluxed for 7.5 h. The mixture was then cooled to 0°C, acidified to pH=3 with 5% HCl and concentrated under reduced pressure. The crude hydrochloride was

dissolved in 1,4-dioxane (12 ml) and 1 N NaOH (2.72 ml) and treated with a solution of Boc₂O (0.392 g, 1.8 mmol) in 1,4-dioxane (4 ml) at 0°C. The reaction mixture was stirred at room temperature for 3 h then concentrated under reduced pressure to remove the organic solvent, cooled at 0°C and acidified with 1 N HCl. The aqueous solution was extracted with EtOAc (3×25ml). The organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude acid, was dissolved in EtOAc/MeOH 1:1 (10 ml) and treated with an ether solution of CH₂N₂. After usual work up the crude syn- α -amino- β -hydroxy ester was purified by silica gel chromatography with EtOAc/n-hexane (2:3) to give 18 (0.181 g, 63%). [α]_D=-4.6 (c=0.86, EtOH abs.). IR, ¹H- and ¹³C NMR spectra were similar to those described for 8. Anal. Calcd. for C₁₁H₂₁NO₅: C=53.43, H=8.56, N=5.66; Found: C=53.53, H=8.55, N=5.61.

(4S,5S)-4-Carboxymethyl-5-ethyl-2-oxo-oxazolidine 19

To the N-Boc methyl ester **18** (0.383 g, 1.55 mmol) was added SOCl₂ (1 ml) at 0°C and the reaction mixture was stirred at room temperature for 24 h. The mixture was concentrated under reduced pressure and the residue was purified by silica gel chromatography with EtOAc/n-hexane (3:2) as eluent to give **19** (0.102 g, 38%). [α]_D=-29.4 (c=0.1, CHCl₃). IR, ¹H and ¹³C NMR were similar to those reported for **13**. C₇H₁₁NO₄: C=48.55, H=6.40, N=8.09; Found: C=48.29, H=6.31, N=8.01.

General procedure for nucleophilic displacement using Grignard reagents/Cul

Compound 2 (2 mmol) and CuI (3 mmol) were added to a flame dried, round-bottom flask which was then flushed with nitrogen and charged with dry THF (20 ml). The suspension was cooled to -78° C (CO₂+acetone) and the Grignard reagent (7 mmol) was added over 10 min. The suspension was stirred at -78° C for 45 min and then for 18 h at room temperature. After this time satd. NH₄Cl (10 ml) was added and the mixture was stirred for 15 min at room temperature. The green solution was then concentrated under reduced pressure and the resulting solution was extracted with EtOAc (3×50 ml), the combined extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography using EtOAc/n-hexane (4:6) as eluent.

(4S,5S)-4-(Benzyloxy)methyl-5-propyl-2-oxo-oxazolidine 20

M.p. 37–38°C. [α]_D=-39.8 (c=0.5, CHCl₃). IR (KBr) ν : 3270, 2847, 1738, 1717, 1456, 1250, 1132 cm⁻¹. ¹H NMR δ : 7.40–7.25 (m, 5H, C₆H₅), 4.53 (s, 2H, C₆H₅CH₂O), 4.25 (dt, J=8.0 and 2×5.0 Hz, 1H, CHO), 3.63 (brq, J=3×5.5 Hz, 1H, CHN), 3.45 (d, J=6.0 Hz, 2H, CH₂O), 1.75 (dddd, J=13.0, 10.0, 8.0 and 5.0 Hz, 2H, CH₂), 1.55–1.35 (m, 2H, CH₂), 0.95 (t, J=7.0 Hz, 3H, CH₃). ¹³C NMR δ : 159.00 (s, NHCO), 137.28 (s, C₆H₅), 128.52, 127.70 (2×d each, C₆H₅), 127.98 (d, C₆H₅), 79.20 (d, CHO), 73.52 (t, OCH₂C₆H₅), 71.78 (t, CH₂O), 57.21 (d, CHN), 36.91 (t, CH₂), 17.88 (d, CH₂), 13.69 (q, CH₃). Anal. Calcd. for C₁₄H₁₉NO₃: C=67.45, H=7.68, N=5.62; Found: C=67.35, H=7.71, N=5.55.

(4S,5S)-4-(Benzyloxy)methyl-5-(2-phenyl)ethyl-2-oxo-oxazolidine 21

M.p.=63–65°C; $[\alpha]_D=-56.6$ (c=3.6, CHCl₃). IR (KBr) v: 3238, 1743, 1717, 1497, 1454, 1406, 1234, 1125, 1044 cm⁻¹. ¹H NMR δ : 7.40–7.25 (m, 5H, C₆H₅), 7.25–7.15 (m, 5H, C₆H₅), 6.12 (brs, 1H, NH), 4.50 (s, 2H, C₆H₅CH₂O), 4.26 (dt, J=8.5 and 2×4.8 Hz, 1H, CHO), 3.64 (q, J=5.5 Hz, 1H, CHN), 3.41 (d, J=5.8 Hz, 2H, OCH₂C*H), 2.82 (ddd, J=14.0, 9.0 and 5.0 Hz, 1H, CH₂CH_AH_BC₆H₅), 2.71 (ddd, J=14.0, 9.0 and 7.0 Hz, 1H, CH₂CH_AH_BC₆H₅), 2.07 (ddt, J=14.0, 2×9.0 and 5.0 Hz, 1H, CH₂CH_D), 1.93 (ddt, J=14.0, 9.0, 7.0 and 5.0 Hz, 1H, CH_CH_D). ¹³C NMR δ : 158.98 (s, NHCO), 140.44 (s, C-1", C₆H₅), 137.29 (s, C-1', C₆H₅), 128.51 (d×4, C-3', C-5', C-3", C-5", C₆H₅), 128.42 (d×2, C-2", C-6", C₆H₅), 127.95 (d, C-4', C₆H₅), 127.69 (d×2, C-2', C-6', C₆H₅), 126.18 (d, C-4", C₆H₅), 78.60 (d, CHO), 73.51 (t, C₆H₅CH₂O), 71.58 (t, OCH₂C*H), 57.21 (d, CHN), 36.60 (t, CH₂), 30.86 (t, CH₂C₆H₅). Anal Calcd. for C₁₉H₂₁NO₃: C=73.29, H=6.80, N=4.50; Found: C=73.11, H=6.61, N=4.57.

(4S,5S)-4-(Benzyloxy)methyl-5-(4-pentenyl)-2-oxo-oxazolidine 22

[α]_D=-45.3 (c=1.2 CHCl₃). IR (neat) v: 3274, 2940, 2858, 1741, 1718, 1384, 1250, 1127 cm⁻¹. ¹H NMR δ =7.40–7.25 (m, 5H, C₆H₅), 5.77 (ddt, J=17.0, 10.0, 2×7.0 Hz, 1H, CH=CH₂), 5.60 (brs, 1H, NH), 5.01 (ddt, J=17.0, 2.0 and 2×1.5 Hz, 1H, CH=CH_AH_B), 4.98 (brdt, J=10.0 and 2.0 Hz, 1H, CH=CH_AH_B), 4.54 (s, 2H, C₆H₅CH₂O), 4.25 (dt, J=8.0 and 2×5.0 Hz, 1H, CHO), 3.64 (dt, J=6.0 and 2×5.0 Hz, 1H, CHN), 3.47 (dd, J=10.0 and 5.0 Hz, 1H, OCH_cH_dC*HN), 3.43 (1H, J=10.0 and 6.0 Hz, OCH_cH_DC*HN), 2.10 (brq, J=7.0 Hz, 2H, CH₂CH=), 1.76 (ddt, J=15.0, 8.0 and 2×5.0 Hz, 1H, OC*HCH_EH_F), 1.68 (dq, J=15.0 and 3×5.0 Hz, 1H, OC*HCH_EH_F), 1.56 (dtt, J=14.0, 2×7.0 and 2×5.0 Hz, 1H, CH₂CH_GH_HCH₂), 1.48 (dtt, J=14.0, 2×7.0 and 2×5.0 Hz, 1H, CH₂CH_gH_hCH₂). ¹³C NMR δ : 158.72 (s, NHCO), 137.87 (d, CH=), 137.27 (s, C₆H₅), 128.57, 127.75 (d×2 each, C₆H₅), 128.05 (d, C₆H₅), 115.23 (t, CH=CH₂), 73.61 (t, C₆H₅CH₂O), 79.25 (d, CHO), 71.85 (t, OCH₂CHN), 57.23 (d, CHN), 34.24 (t, C*HCH₂), 33.16 (t, CH₂CH=), 23.80 (t, CH₂). Anal. Calcd. for C₁₆H₂₁NO₃: C=69.79, H=7.69, N=5.09; Found: C=69.82, H=7.75, N=5.11.

(4S,5S)-4-(Benzyloxy)methyl-5-(2-cyclohexyl)ethyl-2-oxo-oxazolidine 23

M.p. $54-55^{\circ}$ C. [α]_D=-43.45 (c=2.2, CHCl₃); IR (KBr) v: 3236, 2917, 1734, 1716, 1454, 1261, 1119, 1028 cm⁻¹. ¹H NMR δ : 7.40–7.25 (m, 5H, C₆H₅), 5.88 (s, 1H, NH), 4.53 (s, 2H, OCH₂C₆H₅); 4.22 (dt, J=7.5 and 2×5.5 Hz, 1H, CHO), 3.63 (q, J=5.7 Hz, 1H, CHN), 3.45 (d, J=5.8 Hz, 2H, CH₂O), 1.66, 1.22 (m, 2H each, $2\times$ CH₂), 1.18 (m, 1H, CH), 1.7, 1.2, 0.87 (5H, m, 3H, 2H, cyclohexyl). ¹³C NMR δ : 159.96 (s, NHCO), 137.34, 128.55, 128.01, 127.72 (s, $2\times$ d, d, $2\times$ d, C₆H₅), 79.78 (d, CHO), 73.59 (t, OCH₂C₆H₅), 71.93 (t, CH₂O), 57.23 (d, CHN), 37.32 (d, CHCH₂), 33.20, 33.13 (t each, $2\times$ CH₂, cyclohexyl), 32.26, 31.93 (t each, $2\times$ CH₂), 26.54, 26.24 (t each, $3\times$ CH₂, cyclohexyl). Anal. Calcd. for C₁₉H₂₇NO₃: C=71.89, H=8.57, N=4.41; Found: C=71.93, H=8.66, N=4.31.

(4S,5S)-4-(Benzyloxy)methyl-5-butyl-2-oxo-oxazolidine 24

M.p. 43–44°C. [α]_D=-38.9 (c=0.1, CHCl₃). IR (KBr) ν : 3261, 2938, 2858, 1739, 1716, 1220, 1027 cm⁻¹. ¹H NMR δ : 7.40–7.25 (5H, m, C₆H₅), 5.39 (1H, s, NH), 4.51 (2H, s, C₆H₅CH₂O), 4.29 (dt, J=7.5 and 2×5.0 Hz, 1H, CHO), 3.62 (dt, J=7.0 and 2×5.0 Hz, 1H, CHN), 3.45–3.40 (m, 2H, OCH₂), 1.71–1.60 (m, 2H, OC*HCH₂), 1.44–1.33 (m, 4H, 2×CH₂), 0.89 (t, J=7.0 Hz, 3H, CH₃). ¹³C NMR δ : 158.74 (s, NHCO), 137.10 (s, C₆H₅), 127.71, 128.41 (2×d each, C₆H₅), 127.95 (d, C₆H₅), 78.95 (d, CHO), 73.51 (t, OCH₂), 71.57 (t, C₆H₅CH₂O), 57.11 (d, CHN), 36.31 (t, CH₂), 24.11 (t, CH₂), 19.94 (t, CH₂), 13.71 (q, CH₃). Anal. Calcd. for. C₁₅H₂₁NO₃: C=68.42, H=8.04, N=5.32; Found: C=68.70, H=8.13, N=5.44.

(4S,5S)-4-(Benzyloxy)methyl-5-pentyl-2-oxo-oxazolidine 25

[α]_D=-40.5 (c=0.8, CHCl₃). IR (KBr) v: 3274, 2940, 2858, 1741, 1718, 1384, 1250, 1127 cm⁻¹. ¹H NMR δ: 7.40–7.25 (m, 5H, C₆H₅), 5.44 (s, 1H, NH), 4.54 (s, 2H, C₆H₅CH₂O), 4.23 (dt, J=7.5 and 2×5.0 Hz, 1H, CHO), 3.65 (dt, J=7.0 and 2×5.0 Hz, 1H, CHN), 3.47 (dd, J=9.0 and 5.0 Hz, 1H, OCH_AH_B), 3.43 (dd, J=9.0 and 7.0 Hz, 1H, OCH_AH_B), 1.73 (ddt, J=14.0, 2×9.0 and 7.5 Hz, 1H, OC*HCH_CH_D), 1.63 (ddt, J=14.0, 10.0 and 2×5.0 Hz, 1H, OC*HCH_CH_D), 1.46 (m, 1H, CH₂CH_EH_F), 1.46–1.33 (m, 3H, CH₂CH_EH_F and CH₂), 1.31 (m, 2H, CH₂CH₃), 0.89 (t, J=7.0 Hz, 3H, CH₃). ¹³C NMR δ: 158.69 (s, NHCO), 137.29 (s, C₆H₅), 127.76, 128.59 (2×d each, C₆H₅), 128.08 (d, C₆H₅), 79.35 (d, CHO), 73.63 (t, OCH₂), 71.98 (t, C₆H₅CH₂O), 57.24 (d, CHN), 34.85 (t, CH₂), 31.88 (t, CH₂), 24.20 (t, CH₂), 22.45 (t, CH₂), 13.94 (q, CH₃). Anal. Calcd. for. C₁₆H₂₃NO₃: C=69.29, H=8.36, N=5.05; Found: C=69.31, H=8.44, N=5.16.

Acknowledgements

This work was supported by MURST (Ministero dell'Università e della Ricerca Scientifica e Tecnologica, Italy) and by a research contract from Sigma Tau S.p.A (Pomezia, Italy).

References

- 1. 'Amino Acids, Peptides and Proteins' Specialist Periodical Reports, Chem. Soc., London 1968-1995; Vol. 1-28.
- 2. Kumarasamy, R.; Blough, H. A. Virology 1984, 138, 156; Massare, M. J.; Blough, H. A. FEBS Letters 1987, 223, 122.
- 3. Blough, H. A.; Pauwels, R.; De Clercq, E.; Cogniaux, J.; Sprecher-Goldberger, S.; Thiry, L. Biochem. Biophys. Res. Commun. 1986, 26, 33.
- 4. Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon: Oxford, 1989 and references therein.
- a) Di Giovanni, M. C.; Misiti, D.; Zappia, G.; Delle Monache, G. Tetrahedron 1993, 49, 11321;
 b) Dell'Uomo, N.; Di Giovanni, M. C.; Misiti, D.; Zappia, G.; Delle Monache, G. Liebigs Ann. Chem. 1994, 641;
 c) Dell'Uomo, N.; Di Giovanni, M. C.; Misiti, D.; Zappia, G.; Delle Monache, G. Tetrahedron: Asymmetry 1996, 7, 181;
 d) Di Giovanni, M. C.; Misiti, D.; Villani, C.; Zappia, G. Tetrahedron: Asymmetry 1996, 7, 2277.
- Misiti, D.; Zappia, G. Tetrahedron Lett. 1990, 31, 7359; Misiti, D.; Zappia, G; Delle Monache, G. Liebigs Ann. Chem. 1996, 235.
- 7. The enantiomeric excess of 1 was 92% as determined by ¹H NMR in the presence of 0.25 eq. of Eu(hfc)₃.
- 8. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1976, 41, 3064; Holder, R. W.; Matturro, M. G. ibid. 1977, 42, 2166.
- 9. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. A, 1946, 39.
- 10. Leanna, M. R.; Sowin, T. J.; Morton, H. E. Tetrahedron Lett. 1992, 33, 5029.
- 11. Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537.
- 12. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
- 13. Yamada, M.; Okawa, K. Bull. Chem. Soc. Jpn 1985, 58, 2889.
- 14. Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1987, 28, 4185; Xi, N.; Ciufolini, M. A. ibid. 1995, 36, 6595.
- 15. A scalemic mixture (ca. 9:11) of 8 and 18 was prepared in order to identify not overlapping peaks of the enantiomers in ¹H NMR spectrum.
- 16. One of the Referees has suggested that 3 could be formed from 10. However, when pure 10 was reacted under the same conditions (ii in Scheme 2), it did not convert into 3.
- 17. Sakaitani, M.; Ohfune, Y. J. Am. Chem. Soc. 1990, 112, 1150.
- 18. Wiley, G. A.; Hershkowitz, R. L.; Rein, B. M.; Chung, B. C. J. Am. Chem. Soc. 1964, 86, 964. Freshly prepared reagent has to be used to obtain reproducible results.
- 19. For analog reactions see: McKillop, A.; Taylor, R. J. K.; Watson, R. J.; Lewis, N. Synthesis 1994, 31; Kano, S.; Yokomatsu, T.; Iwasawa, H.; Shibuya, S. Tetrahedron Lett. 1987, 28, 6331.
- See: Futugawa, S.; Inui, T.; Shiba, T. Bull. Chem. Soc. Jpn 1973, 46, 3308; Sham, H. L.; Rempel,
 C. A.; Stein, H.; Cohen, J. J. Chem. Soc., Chem. Commun. 1987, 683; Dhavale, D. D.; Gentilucci,
 L.; Piazza, M. G.; Trombini, C. Liebigs Ann. Chem. 1992, 1289.
- 21. Delle Monache, G.; Di Giovanni, M. C.; Maggio, F.; Misiti, D.; Zappia, G. Synthesis 1995, 1155.
- 22. Kaneko, T.; Inui, T. Bull. Soc. Chem. Jpn 1962, 35, 1145.
- 23. Pfister, K.; Robinson, C. A.; Shabica, A. C.; Tishler, M. J. Org. Chem. 1949, 71, 1101.
- 24. Posner, G. H. Organic Reactions 1975, 22, 253; Tamao, K. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I. Eds., Pergamon: Oxford; 1991, p. 467 and references therein.
- Fouquet, G.; Schlosser, M. Angew. Chem. Int. Ed. Engl. 1974, 13, 82; Schlosser, M.; Bossert, H.; Tetrahedron 1991, 47, 6287; Johnson, D. K.; Donohoe, J.; Kang, J. Synth. Commun. 1994, 24, 1557.
- 26. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, Pergamon: Oxford; 1988.
- 27. Blaser, D.; Seebach, D. *Liebigs Ann. Chem.* **1991**, 1067.